Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546295

RESUMO

To enhance the stability of the water-cooled double-crystal monochromator used at the BL17B beamline of the Shanghai Synchrotron Radiation Facility (SSRF), a study was conducted to optimize its cooling system's flow-induced vibration. Through simulation and experimental verification, the researchers analyzed the vibration mechanism and implemented improvement measures. The results indicate that the elastic bellows greatly amplify flow-induced vibration, transmitting it to the first-crystal. By positioning the bellows closer to the crystal, the relative pitch angular vibration of the double-crystal was reduced by 17.5%, and the roll angular vibration decreased by 6.1%. Furthermore, changing the flow rate from 3 to 2.4 l/min further diminished the relative pitch angular vibration by 6.0% and the roll angular vibration by 7.9%. By effectively reducing flow-induced vibration in the water-cooled double-crystal monochromator, equipment stability is enhanced, and the relative angular vibration of the double-crystal has been reduced. This research provides a valuable method and approach for optimizing the stability of the monochromator and related equipment.

2.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746028

RESUMO

Past studies have shown that the hot spring effect can promote wound healing. Mild thermal stimulation and metal ions can promote angiogenesis. In this study, the hot spring effect was simulated by thermosensitive PNIPAAm hydrogel loaded with copper sulfide nanoparticles. Heat stimulation could be generated through near-infrared irradiation, and copper ions solution could be pulsed. On the other hand, the CS/PVA nanofiber membrane was attached to the bottom of the hydrogel to simulate the extracellular matrix structure, thus improving the wound healing ability. The CS/PVA nanofiber membrane was prepared by electrospinning, and the appropriate prescription and process parameters were determined. The nanofiber membrane has uniform pore size, good water absorption and permeability. The poor mechanical properties of PNIPAAm hydrogel were improved by adding inorganic clay. The temperature of the hydrogel loaded with CuS nanoparticles reached 40 °C under near-infrared light irradiation for 20 min, and the release rate of Cu2+ reached 26.89%. The wound-healing rate of the rats in the combined application group reached 79.17% at 13 days, demonstrating superior results over the other control groups. Histological analyses show improved inflammatory response at the healed wound area. These results indicate that this combined application approach represents a promising wound treatment strategy.

3.
Pak J Pharm Sci ; 35(6): 1539-1548, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36789813

RESUMO

The effect of PEG 4000, PVP K30, poloxamer 407 and urea as carriers glycyrrhetinic acid solid dispersions (GA-SDs) on dissolution behavior and physicochemical properties were investigated. In vitro dissolution test results show that GA-SDs prepared with four different carriers have better dissolution properties compared with pure drug and corresponding physical mixtures. The enhancement effect of four carriers on dissolution rate and equilibrium solubility shows that PVP K30>PEG 4000>P 407>urea. In addition, the dissolution rate and solubility of the GA-SDs with a carrier-drug ratio of 8:1 were better than the samples of 4:1. The DSC and XRD patterns showed that crystallization of GA-SDs prepared by PVP K30 was significantly inhibited and both were transformed to amorphous. Based on FTIR detection, hydrogen-bond between carriers (PVP K30, PEG 4000 and P 407) and GA molecules were formed. SEM results showed that compared to GA-SDs prepared by the other three carriers, GA-PVP K30-SDs have a smoother surface and clearer boundary. In conclusion, the findings of this study demonstrated that the dissolution performance of the GA-SDs prepared by the solvent method is related to carrier type. The samples with PVP K30 as the carrier have the best dissolution performance.


Assuntos
Ácido Glicirretínico , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Polietilenoglicóis/química , Povidona/química , Excipientes/química , Portadores de Fármacos/química , Varredura Diferencial de Calorimetria , Difração de Raios X
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120154, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34271240

RESUMO

We explore the influence of molecular alignment and orientation in the ground and excited states on the ionization probability, photoelectron angular distribution (PAD), energy-resolved photoelectron energy spectrum (PES) and two-dimensional momentum spectrum in the resonance-enhanced multiphoton ionization (REMPI) process. The calculated results for the LiH molecule show that molecular pre-alignment and -orientation have different effects on molecular photoionization. The ionization probability and energy-resolved photoelectron spectrum are associated with molecular pre-alignment. The angular distribution of photoelectrons and angular distribution of the momentum spectra are closely dependent on molecular pre-orientation. The ionization probability is also related to the center time and overlap area of the pump and probe pulses.

5.
Anal Chim Acta ; 1137: 56-63, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153609

RESUMO

Trimethylamine (TMA) is ubiquitous in the marine systems and may affect atmospheric chemistry as a precursor and strong stabilizer of atmospheric secondary aerosol, influencing cloud formation. Rapid and accurate measurement of the concentration of TMA in seawater is challenging due to their polarity, aqueous solubility, volatility and existence at low concentrations in marine environments. In this study, a dopant-assisted atmospheric pressure photoionization time-of-flight mass spectrometry (DA-APPI-TOFMS) coupled with a dynamic purge-release method was developed for rapid and sensitive analysis of TMA in seawater. A novel three-zones ionization source has been developed for improving the ionization efficiency of analyte molecules and minimizing the influence of high-humidity of the sample gas, which allowed direct analysis of high-humidity (RH> 90%) gas samples from microbubble purging process by the mass spectrometer. At atmospheric pressure, the three-zones ionization source allows the use of high-speed purge gas to quickly purge all organic amines dissolved in the water into the gas phase, ensuring quantitative accuracy. The limit of quantification (LOQ) for TMA down to 0.1 µg L-1 was obtained in less than 2 min by consuming only 2 mL seawater sample. This method was applied for the determination of the concentrations of TMA in the coastal seawater to validate its practicability and reliability for analysis of trace amines in marine environments.

6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(4): 1265-1271, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418391

RESUMO

OBJECTIVE: To explore the effect of bone morphogenetic protein 4(BMP4) on the cell cycle and apoptosis of hemaropoictic stem and progenitor cells (HSPC) in conditions of 5-fluorouracil (5-FU)-inducing bone marrow suppression and stress hemogenesis, and its possible mechanism. METHODS: The C57BL transgenic mice with BMP4 overexpression were established and were enrolled in transgenic group (BMP4 group), at the same time the wild type mice matching in age, sex and body weight were selected and were enrolled in control group (WT group). The bone marrow suppression was induced by injection with 5-FU in dose of 150 mg/kg, then the nucleated cells were isolated from bone marrow. After the HSPCs were markered with C-kit/sca-1 fluorescent antibodies, the changes of cell cycle and apoptosis of HSPC were detected by Aunexin V/PI and Ki67/DAPI double staining; the cell cycle-essociated hemotopoietic regulatory factors were detected by RT-qPCR. RESULTS: Under physiologic status, there were no significant differences in cell cycle and apoptotic rate of HSPC between WT group and BMP-4 group. After the bone marrow was suppressed, the ratio of HSPC at G0 phase in BMP4 group significantly decreased(P<0.05); the apoptosis rate of HSPC significantly increased(P<0.05); the mRNA expression levels of hypoxia-inducing factor Hif-1α and chemotactic factor CXCL12 in stroma of BMP4 group were down-regulated significanfly(P<0.05). CONCLUSION: Under non-physiologic conditions such as stress hemogenesis or bone marrow suppression, the up-regulation of BMP4 can promote HSPC into cell cycle and apoptosis of HSPC, moreover, the BMP4 may play a regulatory role for cell cycle of HSPC through direct or indirect down-regulation of Hif-1α and CXCL-12 expressions.


Assuntos
Células-Tronco Hematopoéticas , Animais , Antineoplásicos , Apoptose , Proteína Morfogenética Óssea 4 , Ciclo Celular , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Ther Oncolytics ; 12: 224-234, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30847386

RESUMO

Nitidine chloride (NC) has been demonstrated to exert a tumor-suppressive function in various types of human cancers. However, the detailed mechanism of NC-mediated anti-tumor effects remains elusive. It has been reported that SIN1, a component of mTORC2 (mammalian target of rapamycin complex C2), plays an oncogenic role in a variety of human cancers. Therefore, the inhibition of SIN1 could be useful for the treatment of human cancers. In this study, we explored whether NC triggered an anti-cancer function via the inhibition of SIN1 in osteosarcoma (OS) cells. An MTT assay was performed to measure the effect of NC on the cell growth of osteosarcoma cells, and flow cytometry was used to detect the apoptotic rate of the cells after NC treatment. The expression of SIN1 was detected by western blotting. Wound-healing assay and Transwell chamber invasion assay were conducted to analyze the motility of osteosarcoma cells following NC exposure. We found that exposure to NC led to the inhibition of cell growth, migration, and invasion and the induction of apoptosis. Mechanistically, we found that NC inhibited the expression of SIN1 in osteosarcoma cells. Overexpression of SIN1 abrogated the inhibition of cell growth and motility induced by NC in osteosarcoma cells. Our results indicate that NC exhibits its tumor-suppressive activity via the inhibition of SIN1 in osteosarcoma cells, suggesting that NC could be a potential inhibitor of SIN1 in osteosarcoma.

8.
Oncol Lett ; 17(1): 747-756, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30655826

RESUMO

The majority of premalignant gastric lesions develop in the mucosa that has been modified by chronic inflammation. As components of the gastritis microenvironment, mesenchymal stem cells (MSCs) and macrophages are critically involved in the initiation and development of the chronic gastritis-associated gastric epithelial lesions/malignancy process. However, in this process, the underlying mechanism of macrophages interacting with MSCs, particularly the effect of macrophages on MSCs phenotype and function remains to be elucidated. The present study revealed that human umbilical cord-derived MSCs were induced to differentiate into cancer-associated fibroblasts (CAFs) phenotype by co-culture with macrophages (THP-1 cells) in vitro, and which resulted in gastric epithelial lesions/potential malignancy via epithelial-mesenchymal transition-like changes. The results of the present study indicated that macrophages could induce MSCs to acquire CAF-like features and a pro-inflammatory phenotype to remodel the inflammatory microenvironment, which could potentiate oncogenic transformation of gastric epithelium cells. The present study provides potential targets and options for inflammation-associated gastric cancer prevention and intervention.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30195187

RESUMO

The photophysical properties and photochemistry reactions of 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone (HPQ) system in different solutions are studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical investigation explores that an ultrafast barrier-free excited state intramolecular proton transfer (ESIPT) process occurs and the configuration twisting is found in the electronic excited state. In the polar protic methanol solution, the hydrogen-bonded complex composed by HPQ and two methanol molecules (HPQ-2M) could exist stably in the ground state. Upon photoexcitation the isolated HPQ is initially excited to the first excited state, while the HPQ-2M system is firstly excited to the S3 state and undergoes internal conversion (IC) to the S1 state. The intermolecular hydrogen bonds are strengthened in the excited state. The simulated electronic spectra agree well with the experimental results. The strengthening of the intermolecular hydrogen bonds is also confirmed by the calculated vibrational spectra. In addition, the intramolecular charge transfer happens in both HPQ and HPQ-2M systems from the frontier molecular orbital analysis.

10.
Front Microbiol ; 9: 1509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042750

RESUMO

Primary dark tea is used as raw material for compressed dark tea, such as Fu brick tea, Hei brick tea, Hua brick tea, and Qianliang tea. Pile-fermentation is the key process for the formation of the characteristic properties of primary dark tea, during which the microorganism plays an important role. In this study, the changes of major chemical compounds, enzyme activities, microbial diversity, and their correlations were explored during the pile-fermentation process. Our chemical and enzymatic analysis showed that the contents of the major compounds were decreased, while the activities of polyphenol oxidase, cellulase, and pectinase were increased during this process, except peroxidase activity that could not be generated from microbial communities in primary dark tea. The genera Cyberlindnera, Aspergillus, Uwebraunia, and Unclassified Pleosporales of fungus and Klebsiella, Lactobacillus of bacteria were predominant in the early stage of the process, but only Cyberlindnera and Klebsiella were still dominated in the late stage and maintained a relatively constant until the end of the process. The amino acid was identified as the important abiotic factor in shaping the microbial community structure of primary dark tea ecosystem. Network analysis revealed that the microbial taxa were grouped into five modules and seven keystone taxa were identified. Most of the dominant genera were mainly distributed into module III, which indicated that this module was important for the pile-fermentation process of primary dark tea. In addition, bidirectional orthogonal partial least squares (O2PLS) analysis revealed that the fungi made more contributions to the formation of the characteristic properties of primary dark tea than bacteria during the pile-fermentation process. Furthermore, 10 microbial genera including Cyberlindnera, Aspergillus, Eurotium, Uwebraunia, Debaryomyces, Lophiostoma, Peltaster, Klebsiella, Aurantimonas, and Methylobacterium were identified as core functional genera for the pile-fermentation of primary dark tea. This study provides useful information for improving our understanding on the formation mechanism of the characteristic properties of primary dark tea during the pile-fermentation process.

11.
IUCrJ ; 4(Pt 5): 695-699, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989724

RESUMO

Based on first-principles calculations, the relationship between molecular packing and charge-transport parameters has been investigated and analysed in detail. It is found that the crystal packing forces in the flexible organic molecule 4-(1,2,2-triphenylvinyl)-aniline salicylaldehyde hydrazone (A) can apparently overcome the dynamic intramolecular rotations and the intramolecular steric repulsion, effectively enhancing the molecular rigidity and decreasing the internal reorganization energy. The conducting properties of A have also been simulated within the framework of hopping models, and the calculation results show that the intrinsic electron mobility in A is much higher than the corresponding intrinsic hole mobility. These theoretical investigations provide guidance for the efficient and targeted control of the molecular packing and charge-transport properties of organic small-molecule semiconductors and conjugated polymeric materials.

12.
Nat Protoc ; 10(4): 632-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811897

RESUMO

This protocol is intended to provide chemists and physicists with a tool for predicting the charge carrier mobilities of π-stacked systems such as organic semiconductors and the DNA double helix. An experimentally determined crystal structure is required as a starting point. The simulation involves the following operations: (i) searching the crystal structure; (ii) selecting molecular monomers and dimers from the crystal structure; (iii) using density function theory (DFT) calculations to determine electronic coupling for dimers; (iv) using DFT calculations to determine self-reorganization energy of monomers; and (v) using a numerical calculation to determine the charge carrier mobility. For a single crystal structure consisting of medium-sized molecules, this protocol can be completed in ∼4 h. We have selected two case studies (a rubrene crystal and a DNA segment) as examples of how this procedure can be used.


Assuntos
DNA/química , Modelos Teóricos , Naftacenos/química , Semicondutores , Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares
13.
Artigo em Inglês | MEDLINE | ID: mdl-24531106

RESUMO

The excited state hydrogen bonding dynamics and corresponding photophysical processes of fast violet B (FVB) in hydrogen-donating methanol (MeOH) solution are investigated by using time-dependent density functional theory (TDDFT) method. In the FVB molecule, there are -C=O, -N-H groups which could act as hydrogen acceptor and donor. It is demonstrated that both the intramolecular hydrogen bond O⋯H-N in FVB and intermolecular hydrogen bond C=O⋯H-O between FVB and MeOH are formed in the ground state S0 and strengthened in the excited state S1. The absorption spectra are obviously red shifted for the hydrogen-bonded complex in comparison with FVB monomer in the low energy range. The theoretical investigation demonstrates that the twisted intramolecular charge transfer takes place in the excited states for both isolated FVB and hydrogen-bonded complex, and the dominant twisting is along N2-C3 bond. The potential energy curve is investigated to understand the photophysics process of FVB and hydrogen-bonded complex.


Assuntos
Compostos de Diazônio/química , Elétrons , Metanol/química , Simulação por Computador , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Soluções , Fatores de Tempo
14.
Artigo em Inglês | MEDLINE | ID: mdl-23831976

RESUMO

Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.


Assuntos
Metanol/química , Modelos Moleculares , Pirazinas/química , Teoria Quântica , Simulação por Computador , Elétrons , Fluorescência , Ligação de Hidrogênio , Luz , Conformação Molecular , Soluções , Termodinâmica , Fatores de Tempo
15.
J Comput Chem ; 32(15): 3218-25, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21837726

RESUMO

Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.

16.
Phys Chem Chem Phys ; 11(21): 4385-90, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19458842

RESUMO

In the present work, the excited-state double proton transfer (ESDPT) in 2-aminopyridine (2AP)/acid systems has been reconsidered using the combined experimental and theoretical methods. The steady-state absorption and fluorescence spectra of 2AP in different acids, such as formic acid, acetic acid, propionic acid, etc. have been measured. We demonstrated for the first time that the ESDPT reaction can take place between 2AP and all of these acids due to the formation of the intermolecular double hydrogen bonds. Furthermore, the vitally important role of the intermolecular double hydrogen bonds between 2AP and acids for ESDPT reaction has also been confirmed by the disappearance of ESDPT when we add the polar acetonitrile to the 2AP/acids systems. This may be due to that the respective polar solvation of 2AP and acids by the acetonitrile solvent disrupts the formation of intermolecular double hydrogen bonds between 2AP and acids. Moreover, the intermolecular double hydrogen bonds are demonstrated to be significantly strengthened in the electronic excited state of 2AP/acid systems using the time-dependent density functional theory (TDDFT) method. The ESDPT reaction is facilitated by the electronic excited-state hydrogen bond strengthening. In addition, potential energy curves of the electronic excited state along the proton transfer coordinate are also calculated by the TDDFT method. The stepwise mechanism of the ESDPT reaction in the 2AP/acid systems is theoretically reconfirmed, and the concerted mechanism is theoretically excluded. At the same time, the sequence of the double proton transfers is theoretically clarified for the first time using the potential energy curves calculated by TDDFT method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...